

Zimmer Introduces the Maxera™ Cup for More Active Patients

Jun 01, 2011

Large Diameter, Ceramic-on-Ceramic Hip Solution Provides Increased Range of Motion and Stability

Zimmer Holdings, Inc. (NYSE and SIX: ZMH), a global leader in musculoskeletal care, today introduced the Maxera Cup, a new hip solution designed for younger and more active patients. The Maxera Cup features a large diameter femoral head that provides an increased range of motion and enhanced stability. The full hemispherical design of the new cup provides stable fixation. The Maxera Cup incorporates BIOLOX® * delta Ceramic Technology which provides low wear, high fracture resistance and excellent bio-compatibility, making the cup an appropriate choice for the treatment of younger and more active patients.

The Maxera Cup is offered with BIOLOX delta and BIOLOX OPTION Large Diameter Heads (with sizes of 32mm up to 48mm). Large diameter heads offer a high degree of stability due to the increased displacement distance and allow a greater technical range of motion compared to conventional small diameter (28mm) articulation. This results in improved functionality and stability, along with a reduced risk of dislocation [1-6]. A recent clinical study demonstrates that there is a significant decrease in impingement, subluxation, and dislocations for 36mm ceramic-on-ceramic coupling (0.88%) when compared to 28mm femoral heads (4.64%) in total hip replacement [7].

Optimized Articulation Technology

The Maxera Cup is a ceramic-on-ceramic system based on the BIOLOX delta Alumina Matrix Composite, offering low wear, excellent biocompatibility and toughness as well as chemical and hydrothermal stability [10]. The BIOLOX delta Ceramic Surface has also been proven to reduce friction and lower wear, while its favourable wetting characteristics contribute to better lubrication [8, 9]. A ceramic-on-ceramic system forms an appropriate alternative to metal-on-metal articulation for patients who may be sensitive to specific metal ions and/or metal wear [10].

Besides its excellent biocompatibility, increased stability, and increased range of motion, the Maxera Cup is characterized by stable fixation. Its 180 degree full hemispherical design is appointed with three

sets of paired anti-rotation fins that ensure additional rotational stability [11]. The cup provides a familiar surgical technique for orthopaedic surgeons who can choose the desired press-fit based on patients' bone quality using Maxera Cup instrumentation.

The Maxera Cup is not available for commercial distribution in the United States. For more information about the advantages of the Maxera Cup please visit maxera.zimmer.com.

* BIOLOX® delta Ceramic is a trademark of CeramTec AG

About the Company Founded in 1927 and headquartered in Warsaw, Indiana, Zimmer designs, develops, manufactures and markets orthopaedic reconstructive, spinal and trauma devices, dental implants, and related surgical products. Zimmer has operations in more than 25 countries around the world and sells products in more than 100 countries. Zimmer's 2010 sales were approximately \$4.2 billion. The Company is supported by the efforts of more than 8,000 employees worldwide.

Zimmer Safe Harbor Statement

This press release contains forward-looking statements within the safe harbor provisions of the Private Securities Litigation Reform Act of 1995 based on current expectations, estimates, forecasts and projections about the orthopaedics industry, management's beliefs and assumptions made by management. Forward-looking statements may be identified by the use of forward-looking terms such as "may," "will," "expects," "believes," "anticipates," "plans," "estimates," "projects," "assumes," "guides," "targets," "forecasts," and "seeks" or the negative of such terms or other variations on such terms or comparable terminology. These statements are not guarantees of future performance and involve risks, uncertainties and assumptions that could cause actual outcomes and results to differ materially. For a list and description of such risks and uncertainties, see our periodic reports filed with the U.S. Securities and Exchange Commission. We disclaim any intention or obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as may be set forth in our periodic reports. Readers of this document are cautioned not to place undue reliance on these forward-looking statements, since, while we believe the assumptions on which the forward-looking statements are based are reasonable, there can be no assurance that these forwardlooking statements will prove to be accurate. This cautionary statement is applicable to all forwardlooking statements contained in this document.

References

- [1] Amstutz et al., Prevention and treatment of dislocation after total hip replacement using large diameter balls. Clin Orthop Relat Res., Dec 2004, (429): 108-16
- [2] Cuckler et al., Large versus small femoral heads in metal-on-metal total hip arthroplasty, J

- [3] Hummel et al., Decreased Dislocation After Revision Total Hip Arthroplasty Using Larger Femoral Head Size and Posterior Capsular Repair, J Arthroplasty, Vol 24, Issue 6, Suppl 1, Sept 2009: 73-76
- [4] Dowd et al., Large Femoral Heads Can Help Reduce Risk of Dislocation in Total Hip Arthroplasty, J Arthroplasty, Vol 23, Issue 2, Feb 2008: 318
- [5] Peters et al., Reduction in Early Dislocation Rate With Large-Diameter Femoral Heads in Primary Total Hip Arthroplasty, J Arthroplasty, Vol 22, Issue 2, Feb 2007: 312
- [6] Howie et al., A randomised controlled trial of large metal on highly cross-linked polyethylene articulations in primary and revision total hip replacement, 40th Advances in Arthroplasty, 202, Cambridge, MA, 2010.
- [7] Zagra L, et al: THA ceramic-ceramic coupling: The evaluation of the dislocation rate with bigger heads. In Lazennec JY, Dietrich M (eds): Bioceramics in Joint Arthroplasty, Darmstadt, Steinkopff, 2004, 163-168
- [8] Kuntz M, Validation of a New High Performance Alumina Matrix Composite for use in Total Joint Replacement. Seminars in Arthroplasty, 2006; 17: 141-145
- [9] Fisher et al., Wear of Highly Crosslinked Polyethylene against Cobalt Chrome and Ceramic Femoral Heads, 11th International CeramTec Symposium, 185-88, New York, 2006
- [10] CeramTec GmbH; internal data on file.
- [11] Baleani et al., Initial stability of a cementless acetabular cup design: experimental investigation on the effect of adding fins to the rim of the cup. Artif Organs, Aug 2001, 25(8): 664-9